An electromagnetic wave with frequency $\omega $ and wavelength $\lambda $ travels in the $+ y$ direction . Its magnetic field is along $+\, x-$ axis. The vector equation for the associated electric field ( of amplitude $E_0$) is

  • [AIEEE 2012]
  • A

    $\vec E =  - {E_0}\,\cos \,\left( {\omega t + \frac{{2\pi }}{\lambda }y} \right)\hat x$

  • B

    $\vec E =   {E_0}\,\cos \,\left( {\omega t - \frac{{2\pi }}{\lambda }y} \right)\hat x$

  • C

    $\vec E =   {E_0}\,\cos \,\left( {\omega t - \frac{{2\pi }}{\lambda }y} \right)\hat z$

  • D

    $\vec E = -  {E_0}\,\cos \,\left( {\omega t + \frac{{2\pi }}{\lambda }y} \right)\hat z$

Similar Questions

When $EM$ wave propagates through vacuum then

The electric field in an electromagnetic wave is given by $\overrightarrow{\mathrm{E}}=\hat{\mathrm{i}} 40 \cos \omega\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{c}}\right) N \mathrm{NC}^{-1}$. The magnetic field induction of this wave is (in SI unit):

  • [JEE MAIN 2024]

A long straight wire of resistance $R$, radius $a $ and length $ l$ carries a constant current $ I.$ The Poynting vector for the wire will be

The magnetic field of a beam emerging from a filter facing a floodlight is given by B${B_0} = 12 \times {10^{ - 8}}\,\sin \,(1.20 \times {10^7}\,z - 3.60 \times {10^{15}}t)T$. What is the average intensity of the beam ?

Write characteristics of electromagnetic waves.