The electric fields of two plane electromagnetic plane waves in vacuum are given by
$\overrightarrow{\mathrm{E}}_{1}=\mathrm{E}_{0} \hat{\mathrm{j}} \cos (\omega \mathrm{t}-\mathrm{kx})$ and
$\overrightarrow{\mathrm{E}}_{2}=\mathrm{E}_{0} \hat{\mathrm{k}} \cos (\omega \mathrm{t}-\mathrm{ky})$
At $t=0,$ a particle of charge $q$ is at origin with a velocity $\overrightarrow{\mathrm{v}}=0.8 \mathrm{c} \hat{\mathrm{j}}$ ($c$ is the speed of light in vacuum). The instantaneous force experienced by the particle is
$\mathrm{E}_{0} \mathrm{q}(-0.8 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
$\mathrm{E}_{0} \mathrm{q}(0.8 \hat{\mathrm{i}}-\hat{\mathrm{j}}+0.4 \hat{\mathrm{k}})$
$\mathrm{E}_{0} \mathrm{q}(0.8 \hat{\mathrm{i}}+\hat{\mathrm{j}}+0.2 \hat{\mathrm{k}})$
$\mathrm{E}_{0} \mathrm{q}(0.4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+0.8 \hat{\mathrm{k}})$
A plane electromagnetic wave of frequency $500\, MHz$ is travelling in vacuum along $y-$direction. At a particular point in space and
time, $\overrightarrow{ B }=8.0 \times 10^{-8} \hat{ z } \;T$. The value of electric field at this point is
(speed of light $\left.=3 \times 10^{8}\, ms ^{-1}\right)$
$\hat{ x }, \hat{ y }, \hat{ z }$ are unit vectors along $x , y$ and $z$ direction.
The magnetic field of a plane electromagnetic Wave is $\overrightarrow{ B }=3 \times 10^{-8} \sin [200 \pi( y + ct )] \hat{ i }\, T$ Where $c=3 \times 10^{8} \,ms ^{-1}$ is the speed of light. The corresponding electric field is
The electric field in a plane electromagnetic wave is given by
$\overrightarrow{{E}}=200 \cos \left[\left(\frac{0.5 \times 10^{3}}{{m}}\right) {x}-\left(1.5 \times 10^{11} \frac{{rad}}{{s}} \times {t}\right)\right] \frac{{V}}{{m}} \hat{{j}}$
If this wave falls normally on a perfectly reflecting surface having an area of $100 \;{cm}^{2}$. If the radiation pressure exerted by the $E.M.$ wave on the surface during a $10\, minute$ exposure is $\frac{{x}}{10^{9}} \frac{{N}}{{m}^{2}}$. Find the value of ${x}$.
The magnetic field of a beam emerging from a filter facing a floodlight is given by B${B_0} = 12 \times {10^{ - 8}}\,\sin \,(1.20 \times {10^7}\,z - 3.60 \times {10^{15}}t)T$. What is the average intensity of the beam ?
The electric field for a plane electromagnetic wave travelling in the $+y$ direction is shown. Consider a point where $\vec E$ is in $+z$ direction. The $\vec B$ field is