An electron is moving along the positive $X$-axis. You want to apply a magnetic field for a short time so that the electron may reverse its direction and move parallel to the negative $X$-axis. This can be done by applying the magnetic field along
$Y$-axis
$X$-axis
$Y$-axis only
None of these
The time period of a charged particle undergoing a circular motion in a uniform magnetic field is independent of its
A proton of mass $1.67\times10^{-27}\, kg$ and charge $1.6\times10^{-19}\, C$ is projected with a speed of $2\times10^6\, m/s$ at an angle of $60^o$ to the $X-$ axis. If a uniform magnetic field of $0.104\, tesla$ is applied along the $Y-$ axis, the path of the proton is
An electron is moving in a circular path under the influence of a transverse magnetic field of $3.57 \times 10^{-2}\, T $. If the value of $e/m$ is $1.76 \times 10^{11}\, C/kg $, the frequency of revolution of the electron is
A magnetic field can be produced by
A deutron of kinetic energy $50\, keV$ is describing a circular orbit of radius $0.5$ $metre$ in a plane perpendicular to magnetic field $\overrightarrow B $. The kinetic energy of the proton that describes a circular orbit of radius $0.5$ $metre$ in the same plane with the same $\overrightarrow B $ is........$keV$