An electron and a proton enter a magnetic field perpendicularly. Both have same kinetic energy. Which of the following is true

  • A

    Trajectory of electron is less curved

  • B

    Trajectory of proton is less curved

  • C

    Both trajectories are equally curved

  • D

    Both move on straight-line path

Similar Questions

An electron beam passes through a magnetic field of $2 \times 10^{-3}\,Wb/m^2$ and an electric field of $1.0 \times 10^4\,V/m$ both acting simultaneously. The path of electron remains undeviated. The speed of electron if the electric field is removed, and the radius of electron path will be respectively

  • [AIIMS 2011]

An electron, a proton, a deuteron and an alpha particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of these particles are respectively $R_e, R_p, R_d \,$ and $\, R_\alpha$. It follows that

A particle of mass $m$ and charge $q$, accelerated by a potential difference $V$ enters a region of a uniform transverse magnetic field $B$. If $d$ is the thickness of the region of $B$, the angle $\theta$ through which the particle deviates from the initial direction on leaving the region is given by

An electron is projected with velocity $\vec v$ in a uniform magnetic field $\vec B$ . The angle $\theta$  between $\vec v$ and $\vec B$  lines between $0^o$ and $\frac{\pi}{2}$ . It velocity $\vec v$ vector returns to its initial  value in time interval of 

An electron is moving along $+x$ direction with a velocity of $6 \times 10^{6}\, ms ^{-1}$. It enters a region of uniform electric field of $300 \,V / cm$ pointing along $+ y$ direction. The magnitude and direction of the magnetic field set up in this region such that the electron keeps moving along the $x$ direction will be

  • [JEE MAIN 2020]