An electron is moving towards $x$-axis. An electric field is along $y$-direction then path of electron is

  • A

    Circular

  • B

    Elliptical

  • C

    Parabola

  • D

    None of these

Similar Questions

An electron is released from the bottom plate $A$ as shown in the figure $(E = 10^4\, N/C)$. The velocity of the electron when it reaches plate $B$ will be nearly equal to

A uniform electric field, $\vec{E}=-400 \sqrt{3} \hat{y} NC ^{-1}$ is applied in a region. A charged particle of mass $m$ carrying positive charge $q$ is projected in this region with an initial speed of $2 \sqrt{10} \times 10^6 ms ^{-1}$. This particle is aimed to hit a target $T$, which is $5 m$ away from its entry point into the field as shown schematically in the figure. Take $\frac{ q }{ m }=10^{10} Ckg ^{-1}$. Then-

$(A)$ the particle will hit $T$ if projected at an angle $45^{\circ}$ from the horizontal

$(B)$ the particle will hit $T$ if projected either at an angle $30^{\circ}$ or $60^{\circ}$ from the horizontal

$(C)$ time taken by the particle to hit $T$ could be $\sqrt{\frac{5}{6}} \mu s$ as well as $\sqrt{\frac{5}{2}} \mu s$

$(D)$ time taken by the particle to hit $T$ is $\sqrt{\frac{5}{3}} \mu s$

  • [IIT 2020]

A mass $m = 20\,g$ has a charge $q = 3.0\,mC$. It moves with a velocity of $20\,m/s$ and enters a region of electric field of $80\,N/C$ in the same direction as the velocity of the mass. The velocity of the mass after $3$ seconds in this region is.......$m/s$

A charged particle of mass $m = 2\ kg$ and charge $1μC$ is projected from a horizontal ground at an angle $\theta  = 45^o$ with speed $10\ ms^{-1}$ . In space, a horizontal electric field towards the direction of projection $E = 2 \times 10^7\ NC^{-1}$ exists. The range of the projectile is......$m$

There is a uniform electric field of strength ${10^3}\,V/m$ along $y$-axis. A body of mass $1\,g$ and charge $10^{-6}\,C$ is projected into the field from origin along the positive $x$-axis with a velocity $10\,m/s$. Its speed in $m/s$ after $10\,s$ is (Neglect gravitation)