Gujarati
Hindi
4.Moving Charges and Magnetism
medium

An electron moves with a speed of $2 \times 10^5\, m/s$ along the $+ x$ direction in a magnetic field $\vec B = \left( {\hat i - 4\hat j - 3\hat k} \right)\,tesla$. The magnitude of the force (in newton) experienced by the electron is (the charge on electron $= 1.6 \times 10^{-19}\, C$)

A

$1.18 \times {10^{ - 13}}$

B

$1.28 \times {10^{ - 13}}$

C

$1.6 \times {10^{ - 13}}$

D

$1.72 \times {10^{ - 13}}$

Solution

Given

$\overrightarrow{\mathrm{v}} =\left(2 \times 10^{5} \hat{\mathrm{i}}\right) \mathrm{m} / \mathrm{s} $

$\overrightarrow{\mathrm{B}} =(\hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}) \mathrm{T} $

$\overrightarrow{\mathrm{F}} =\mathrm{e}(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}})$

$=\mathrm{e}\left[\left(2 \times 10^{5} \hat{\mathrm{i}}\right) \times(\hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})\right] $

$=2 \times 10^{5} \times 1.6 \times 10^{-19}[-4 \hat{\mathrm{k}}+3 \hat{\mathrm{j}}]$

Its magnitude is

$\mathrm{F}=2 \times 10^{5} \times 1.6 \times 10^{-19} \times \sqrt{(-4)^{2}+(3)^{2}}$

${=2 \times 10^{5} \times 1.6 \times 10^{-19} \times 5} $

${=1.6 \times 10^{-13} \mathrm{\,N}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.