An ellipse and a hyperbola have the same centre origin, the same foci and the minor-axis of the one is the same as the conjugate axis of the other. If $ e_1, e_2 $ be their eccentricities respectively, then  $e_1^{ - 2} + e_2^{ - 2}$ equals

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

Find the equation for the ellipse that satisfies the given conditions: Length of major axis $26$ foci $(±5,\,0)$

If the angle between the lines joining the end points of minor axis of an ellipse with its foci is $\pi\over2$, then the eccentricity of the ellipse is

  • [IIT 1997]

A tangent is drawn to the ellipse $\frac{{{x^2}}}{{32}} + \frac{{{y^2}}}{8} = 1$ from the point $A(8, 0)$ to touch the ellipse at point $P.$ If the normal at $P$ meets the major axis of ellipse at point $B,$ then the length $BC$ is equal to (where $C$ is centre of ellipse) - ............ $\mathrm{units}$

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^2} {16}=1$

Two sets $A$ and $B$ are as under:

$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .

  • [JEE MAIN 2018]