An ellipse and a hyperbola have the same centre origin, the same foci and the minor-axis of the one is the same as the conjugate axis of the other. If $ e_1, e_2 $ be their eccentricities respectively, then  $e_1^{ - 2} + e_2^{ - 2}$ equals

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

The  the circle passing through the foci of the $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ and having centre at $(0,3) $ is

  • [JEE MAIN 2013]

Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9 x^{2}+4 y^{2}=36$.

The equation of the tangents drawn at the ends of the major axis of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, are

If $a$ and $c$ are positive real numbers and the ellipse $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ has four distinct points in common with the circle $x^2 + y^2 = 9a^2$ , then

  • [JEE MAIN 2013]

Minimum distance between two points $P$ and $Q$ on the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1$ , if difference between eccentric angles of $P$ and $Q$ is $\frac{{3\pi }}{2}$ , is