- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The smallest possible positive slope of a line whose $y$-intercept is $5$ and which has a common point with the ellipse $9 x^2+16 y^2=144$ is
A
$\frac{3}{4}$
B
$1$
C
$\frac{4}{3}$
D
$\frac{9}{16}$
(KVPY-2011)
Solution
(b)
We have equation of ellipse
$9 x^2+16 y^2 =144$
$\Rightarrow \quad \frac{x^2}{16}+\frac{y^2}{9} =1$
Equation of tangent of ellipse is
$y =m x \pm \sqrt{a^2 m^2+b^2}$
$\therefore \quad y =m x \pm \sqrt{16 m^2+9}$
Now, given $y$-intercept $=5$
$\therefore \sqrt{16 m^2+9}=5 \Rightarrow 16 m^2+9=25$
$\Rightarrow \quad 16 m^2=16 \Rightarrow m=\pm 1$
$\therefore \text { Positive slope }=1$
Standard 11
Mathematics