An infinitely long thin wire carrying a uniform linear static charge density $\lambda $ is placed along the $z-$ axis (figure). The wire is set into motion along its length with a uniform velocity $V = v{\hat k_z}$. Calculate the pointing vector $S = \frac{1}{{{\mu _0}}}(\vec E \times \vec B)$ .

904-94

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Electric field produced due to infinitely long charged wire,

$a=$ radius of cylindrical Gaussian surface around wire.

Magnetic field at ' $a$ ' distance from current carrying conductor,

$\overrightarrow{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2 \pi a} \hat{i}$

but $\mathrm{I}=\frac{q}{t}=\frac{\lambda \mathrm{L}}{t}=\lambda v \quad\left[\because \mathrm{Q}=\lambda \mathrm{L}\right.$ and $\left.\frac{\mathrm{L}}{t}=v\right]$

Here $L=$ length

$\therefore \overrightarrow{\mathrm{B}}=\frac{\mu_{0} \lambda v}{2 \pi a} \hat{i} \quad \ldots$ $(2)$

Now pointing vector,

$\mathrm{S}=\frac{1}{\mu_{0}}(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}})$

$\therefore \mathrm{S}=\frac{1}{\mu_{0}}\left[\frac{\lambda}{2 \pi a} \hat{j} \times \frac{\mu_{0} \lambda v}{2 \pi a} \hat{i}\right]$

$=\frac{1}{\mu_{0}}\left(\frac{\lambda}{2 \pi a} \times \frac{\mu_{0} \lambda v}{2 \pi a}\right)(\hat{j} \times \hat{i})$

$=\frac{\lambda^{2} v}{4 \pi^{2} \in_{0} a^{2}}(-\hat{k}) \quad[\because \hat{j} \times \hat{i}=-\hat{k}]$

$\therefore \mathrm{S}=-\frac{\lambda^{2} v}{4 \pi^{2} \in_{0} a^{2}} \hat{k}$

904-s94

Similar Questions

The magnetic field in a plane electromagnetic wave is given by $=2 \times 10^{-7} \sin \left(0.5 \times 10^3 x+1.5 \times 10^{11} t\right)$. This electromagnetic wave is .........

A plane electromagnetic wave of wave intensity $6\, W/ m^2$ strikes a small mirror area $40 cm^2$, held perpendicular to the approaching wave. The momentum transferred by the wave to the mirror each second will be

The electric fields of two plane electromagnetic plane waves in vacuum are given by

$\overrightarrow{\mathrm{E}}_{1}=\mathrm{E}_{0} \hat{\mathrm{j}} \cos (\omega \mathrm{t}-\mathrm{kx})$ and

$\overrightarrow{\mathrm{E}}_{2}=\mathrm{E}_{0} \hat{\mathrm{k}} \cos (\omega \mathrm{t}-\mathrm{ky})$

At $t=0,$ a particle of charge $q$ is at origin with a velocity $\overrightarrow{\mathrm{v}}=0.8 \mathrm{c} \hat{\mathrm{j}}$ ($c$ is the speed of light in vacuum). The instantaneous force experienced by the particle is 

  • [JEE MAIN 2020]

The magnetic field in a plane electromagnetic wave is given by, $B_{y}=2 \times 10^{-7} \sin \left(\pi \times 10^{3} x+3 \pi \times 10^{11} t\right) \;T$ Calculate the wavelength.

  • [NEET 2020]

Even though an electric field $E$ exerts a force $qE$ on a charged particle yet the electric field of an $EM$ wave does not contribute to the radiation pressure (but transfers energy). Explain.