An infinitely long thin wire carrying a uniform linear static charge density $\lambda $ is placed along the $z-$ axis (figure). The wire is set into motion along its length with a uniform velocity $V = v{\hat k_z}$. Calculate the pointing vector $S = \frac{1}{{{\mu _0}}}(\vec E \times \vec B)$ .

904-94

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Electric field produced due to infinitely long charged wire,

$a=$ radius of cylindrical Gaussian surface around wire.

Magnetic field at ' $a$ ' distance from current carrying conductor,

$\overrightarrow{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2 \pi a} \hat{i}$

but $\mathrm{I}=\frac{q}{t}=\frac{\lambda \mathrm{L}}{t}=\lambda v \quad\left[\because \mathrm{Q}=\lambda \mathrm{L}\right.$ and $\left.\frac{\mathrm{L}}{t}=v\right]$

Here $L=$ length

$\therefore \overrightarrow{\mathrm{B}}=\frac{\mu_{0} \lambda v}{2 \pi a} \hat{i} \quad \ldots$ $(2)$

Now pointing vector,

$\mathrm{S}=\frac{1}{\mu_{0}}(\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}})$

$\therefore \mathrm{S}=\frac{1}{\mu_{0}}\left[\frac{\lambda}{2 \pi a} \hat{j} \times \frac{\mu_{0} \lambda v}{2 \pi a} \hat{i}\right]$

$=\frac{1}{\mu_{0}}\left(\frac{\lambda}{2 \pi a} \times \frac{\mu_{0} \lambda v}{2 \pi a}\right)(\hat{j} \times \hat{i})$

$=\frac{\lambda^{2} v}{4 \pi^{2} \in_{0} a^{2}}(-\hat{k}) \quad[\because \hat{j} \times \hat{i}=-\hat{k}]$

$\therefore \mathrm{S}=-\frac{\lambda^{2} v}{4 \pi^{2} \in_{0} a^{2}} \hat{k}$

904-s94

Similar Questions

The electric field in a plane electromagnetic wave is given by

$\overrightarrow{{E}}=200 \cos \left[\left(\frac{0.5 \times 10^{3}}{{m}}\right) {x}-\left(1.5 \times 10^{11} \frac{{rad}}{{s}} \times {t}\right)\right] \frac{{V}}{{m}} \hat{{j}}$

If this wave falls normally on a perfectly reflecting surface having an area of $100 \;{cm}^{2}$. If the radiation pressure exerted by the $E.M.$ wave on the surface during a $10\, minute$ exposure is $\frac{{x}}{10^{9}} \frac{{N}}{{m}^{2}}$. Find the value of ${x}$.

  • [JEE MAIN 2021]

The electric field of a plane electromagnetic wave varies with time of amplitude $2\, Vm^{-1}$ propagating along $z$ -axis. The average energy density of the magnetic field  (in $J\, m^{-3}$) is 

The speed of electromagnetic wave in a medium (whose dielectric constant is $2.25$ and relative permeability is $4$ ) is equal to .......... $\times 10^8 \,m / s$

An electromagnetic wave in vacuum has the electric and magnetic field $\vec E$ and $\vec B$ , which are always perpendicular to each other. The direction of polarization is given by $\vec X$ and that of wave propagation by $\vec k$ . Then

  • [AIEEE 2012]

A plane electromagnetic wave of frequency $25\; \mathrm{GHz}$ is propagating in vacuum along the $z-$direction. At a particular point in space and time, the magnetic field is given by $\overrightarrow{\mathrm{B}}=5 \times 10^{-8} \hat{\mathrm{j}}\; \mathrm{T}$. The corresponding electric field $\overrightarrow{\mathrm{E}}$ is (speed of light  $\mathrm{c}=3 \times 10^{8}\; \mathrm{ms}^{-1})$

  • [JEE MAIN 2020]