An object falling through a fluid is observed to have acceleration given by $a = g -bv$ where $g =$ gravitational acceleration and $b$ is constant. After a long time of release, it is observed to fall with constant speed. The value of constant speed is
$\frac{g}{b}$
$\frac{b}{g}$
$bg$
$b$
The diameter of an air bubble which was initially $2\,mm$, rises steadily through a solution of density $1750\,kg\,m\,m ^{-3}$ at the rate of $0.35\,cms ^{-1}$. The coefficient of viscosity of the solution is poise (in nearest integer). (the density of air is negligible).
Why bubbles rise in soda water bottle ?
In an experiment to verify Stokes law, a small spherical ball of radius $r$ and density $\rho$ falls under gravity through a distance $h$ in air before entering a tank of water. If the terminal velocity of the ball inside water is same as its velocity just before entering the water surface, then the value of $h$ is proportional to :
(ignore viscosity of air)
State stokes’ law. By using it deduce the expression for :
$(i)$ initial acceleration of smooth sphere and
$(ii)$ equation of terminal velocity of sphere falling freely through the viscous medium.
$(iii)$ Explain : Upward motion of bubbles produced in fluid.
On which factors terminal velocity depends ? Explain.