- Home
- Standard 11
- Physics
9-1.Fluid Mechanics
easy
An air bubble of radius $r$ rises steadily through a liquid of density $\rho $ with velocity $v$ . The coefficient of viscosity of liquid is
A
$\frac{2}{9}\frac{{{r^2}\rho g}}{v}$
B
$\frac{2}{9}\frac{{{r^2}g}}{{v\rho }}$
C
$\frac{2}{9}\frac{{v\rho g}}{{{r^2}}}$
D
$\frac{2}{9}\frac{{\rho g}}{{v{r^2}}}$
Solution
Steady motion $\Rightarrow \mathrm{a}=0$
$\mathrm{F}_{\mathrm{net}}=0$
$\mathrm{F}_{\mathrm{v}}=\mathrm{F}_{\mathrm{B}}$
$6 \pi \eta r v=\rho \cdot \frac{4}{3} \pi r^{3} g$
$\eta=\frac{2}{9} \frac{\rho r^{2} g}{v}$
$Method \,II:$ Dimensional analysis.
Standard 11
Physics