An object is thrown along a direction inclined at an angle of ${45^o}$ with the horizontal direction. The horizontal range of the particle is equal to
Vertical height
Twice the vertical height
Thrice the vertical height
Four times the vertical height
Shots are fired from the top of a tower and from its bottom simultaneously at angles $30^o$ and $60^o$ as shown. If horizontal distance of the point of collision is at a distance $'a'$ from the tower then height of tower $h$ is :
A boy can throw a stone up to a maximum height of $10\ m$. The maximum horizontal distance that the boy can throw the same stone up to will be .......... $m$
At what angle of elevation, should a projectile be projected with velocity $20 \,ms ^{-1}$, so as to reach a maximum height of $10 \,m$ ?
A cricket fielder can throw the cricket ball with a speed $v_{0} .$ If he throws the ball while running with speed $u$ at an angle $\theta$ to the horizontal, find
$(a)$ the effective angle to the horizontal at which the ball is projected in air as seen by a spectator
$(b)$ what will be time of flight?
$(c)$ what is the distance (horizontal range) from the point of projection at which the ball will land ?
$(d)$ find $\theta$ at which he should throw the ball that would maximise the horizontal range as found in $(iii)$.
$(e)$ how does $\theta $ for maximum range change if $u > u_0$. $u =u_0$ $u < v_0$ ?
$(f)$ how does $\theta $ in $(v)$ compare with that for $u=0$ $($ i.e., $45^{o})$ ?
The speed of a projectile at its maximum height is $\frac {\sqrt 3}{2}$ times its initial speed. If the range of the projectile is $P$ times the maximum height attained by it, $P$ is equal to