If the initial velocity of a projectile be doubled, keeping the angle of projection same, the maximum height reached by it will
Remain the same
Be doubled
Be quadrupled
Be halved
A projectile is thrown with a velocity of $50\,\, ms^{^{-1}}$ at an angle of $53^o$ with the horizontal Determine the instants at which the projectile is at the same height
In projectile motion, the modulus of rate of change of velocity
Two particles $A$ and $B$ are moving in horizontal plane as shown in figure at $t = 0$ , then time after which $A$ will catch $B$ will be.......$s$
Motion in two dimensions, in a plane can be studied by expressing position, velocity and acceleration as vectors in cartesian co-ordinates $A=A_{x} \hat{i}+A_{y} \hat{j},$ where $\hat{i}$ and $\hat{\jmath}$ are unit vector along $x$ and $y$ - directions, respectively and $A_{x}$ and $A_{y}$ are corresponding components of $A$. Motion can also be studied by expressing vectors in circular polar co-ordinates as $\overrightarrow A \, = \,{A_r}\widehat r\,\, + \,{A_\theta }\hat \theta $ where $\hat{r}=\frac{r}{r}=\cos \theta \hat{i}+\sin \theta \hat{\jmath}$ and $\hat{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}$ are unit vectors along direction in which $\hat{r}$ and $\hat{\theta}$ are increasing.
$(a)$ Express ${\widehat {i\,}}$ and ${\widehat {j\,}}$ in terms of ${\widehat {r\,}}$ and ${\widehat {\theta }}$ .
$(b)$ Show that both $\widehat r$ and $\widehat \theta $ are unit vectors and are perpendicular to each other.
$(c)$ Show that $\frac{d}{{dr}}(\widehat r)\, = \,\omega \hat \theta \,$, where $\omega \, = \,\frac{{d\theta }}{{dt}}$ and $\frac{d}{{dt}}(\widehat \theta )\, = \, - \theta \widehat r\,$.
$(d)$ For a particle moving along a spiral given by $\overrightarrow r \, = \,a\theta \widehat r$, where $a = 1$ (unit), find dimensions of $a$.
$(e)$ Find velocity and acceleration in polar vector representation for particle moving along spiral described in $(d)$ above.
The maximum horizontal range of a projectile is $160\, m$. When the projectile is thrown with the same speed at an elevation of $30^o$ from the horizontal, it will reach to the maximum height of ......... $m$