An object of $m\, kg$ with speed of $v\, m/s$ strikes a wall at an angle $\theta$ and rebounds at the same speed and same angle. The magnitude of the change in momentum of the object will be
$2m\,v\,\cos \theta $
$2\,m\,v\,\sin \theta $
$0$
$2\,m\,v$
Write two properties of vector addition.
Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is
If the angle between $\hat a$ and $\hat b$ is $60^o$, then which of the following vector $(s)$ have magnitude one
$(A)$ $\frac{\hat a + \hat b}{\sqrt 3}$ $(B)$ $\hat a + \widehat b$ $(C)$ $\hat a$ $(D)$ $\hat b$
Given that; $A = B = C$. If $\vec A + \vec B = \vec C,$ then the angle between $\vec A$ and $\vec C$ is $\theta _1$. If $\vec A + \vec B+ \vec C = 0,$ then the angle between $\vec A$ and $\vec C$ is $\theta _2$. What is the relation between $\theta _1$ and $\theta _2$ ?
A person moves $30\, m$ north and then $20\, m$ towards east and finally $30\sqrt 2 \,m$ in south-west direction. The displacement of the person from the origin will be