एक प्रकाशीय बेंच में एक $1.5 m$ लंबा पैमाना है जिसका प्रत्येक $cm$ चार बराबर भागों में विभाजित है। एक पतले उत्तल लेंस की फोकस दूरी के मापन के दौरान लेंस तथा वस्तु पिन को पैमाने पर क्रमशः $75 cm$ तथा $45 cm$ के चिन्हों पर रखा जाता है। लेंस के दूसरी तरफ वस्तु पिन का प्रतिबिम्ब $135 cm$ चिन्ह पर रखी प्रतिबिम्ब पिन से मिलता है। इस प्रयोग में लेंस के फोकस दूरी के मापन में प्रतिशत त्रुटि. . . . . है।

  • [IIT 2019]
  • A

    $0.69$

  • B

    $0.75$

  • C

    $0.80$

  • D

    $0.85$

Similar Questions

सरल लोलक का दोलन काल $T = 2\pi \sqrt {\frac{l}{g}} $ से दिया जाता है, जहाँ l लगभग $100 \,cm$ है तथा न्यूनतम $1 \,mm$ तक शुद्धता से मापा जाता है। दोलन काल $(T)$ लगभग $2$ सैकण्ड है। यदि $100$ दोलनों के समय को उस घड़ी से मापा जाए जिसका अल्पतमांक $0.1$ सैकण्ड है, तो $g$ में प्रतिशत त्रुटि  ......... $\%$ होगी

अंर्तरास्ट्रीय एवोगाड्रो कोआर्डिनशन परियोजना (The International Avogadro Coordination Project) ने क्रिस्टलीय सिलिकन का उपयोग कर विश्व का सबसे सटीक गोलक बनाया है। इस गोलक का व्यास $9.4 \,cm$ है, तथा व्यास मापने में अनिश्रितता $0.2 \,nm$ है | क्रिस्टल में परमाणु, $a$ भुजा वाले घनों में संकुलित है। घन की भुजा को $2 \times 10^{-9}$ सापेक्षिक त्रुटि से मापा जाता है, एवं प्रत्येक घन में $8$ परमाणु हैं। गोलक के द्रव्यमान में सापेक्षिक त्रुटि निम्न में से किस के करीब होगी ? (मान लीजिए कि सिलिकन का मोलर द्रव्यमान एवं एवोगाड्रो संख्या के मान एकदम सटीक रूप से मालूम हैं।)

  • [KVPY 2021]

एक भौतिक राशि $X$ चार प्रक्षेपित राशियों $k,\,l,\, m$ एवं $n$ से व्यजंक $X = \frac{{2{k^3}{l^2}}}{{m\sqrt n }}$ द्वारा सम्बन्धित है तथा $k,\,l,\, m$ व $n$ के मापन की प्रतिशत त्रुटि क्रमश: $1\%,2\%,3\%$ एवं $4\% $ है तो $X$ में प्रतिशत त्रुटि ......... $\%$ होगी

घन की आकृति वाले किसी पदार्थ का घनत्व, उसकी तीन भुजाओं एवं द्रव्यमान को माप कर, निकाला जाता है। यदि द्रव्यमान एवं लम्बाई कों मापने में सापेक्ष त्रुटियाँ क्रमशः $4 \%$ तथा $3 \%$ हो तो घनत्व को मापने में अधिकतम त्रुटि ......... $\%$ होगी

  • [AIIMS 2013]

नीचे दो कथन दिये गये है: एक को अभिकथन $A$ तथा दूसरे को कारण $R$ से चिन्हित किया जाता है। अभिकथन $A$ : $(5 \pm 0.1) \mathrm{mm}$ त्रिज्या एवं एक निश्चित घनत्व की एक गोलाकार वस्तु एक नियत घनत्व के द्रव में गिर रही है। इसके सीमान्त वेग की गणना में प्रतिशत त्रुटि $4 \%$ है।

कारण $R$ : द्रव में गिरती हुई गोलाकार वस्तु का सीमान्त वेग इसकी त्रिज्या के व्युत्क्रमानुपाती होता है। उपरोक्त कथनों के संदर्भ में, नीचे दिये गये विकल्पों में से सही उत्तर चुनिए।

  • [JEE MAIN 2023]