- Home
- Standard 11
- Physics
5.Work, Energy, Power and Collision
hard
As shown in figure there is a spring block system. Block of mass $500\,g$ is pressed against a horizontal spring fixed at one end to compress the spring through $5.0\,cm$ . The spring constant is $500\,N/m$ . When released, calculate the distance where it will hit the ground $4\,m$ below the spring ? $(g = 10\,m/s^2)$

A
$1\,m$
B
$\sqrt 2\,m$
C
$\sqrt 3\,m$
D
$4\,m$
Solution
$C.O.M.E.$
$\frac{1}{2} \mathrm{kx}^{2}=\frac{1}{2} \mathrm{mv}^{2}$
$V=\sqrt{\frac{k x^{2}}{m}}$
Time of flight $t=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$
Horizontal dist. $=\mathrm{vt}$
$=\sqrt{\frac{\mathrm{kx}^{2}}{\mathrm{m}}} \times \sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$
$=\sqrt{\frac{500 \times(.05)^{2}}{0.5}} \times \sqrt{\frac{2 \times 4}{10}}=\sqrt{2} \mathrm{m}$
Standard 11
Physics
Similar Questions
normal