Two particles with mass $m_1$ = $16\ kg$ and $m_2$ = $2\ kg$ slide as unit with a common velocity of $12\ ms^{-1}$ on a level frictionless surface. Between them is a compressed massless spring with spring constant $k$ = $100\ Nm^{-1}$ . The spring, originally compressed by $25\ cm$ , is suddenly released, sending the two masses, which are connected to the spring, flying apart from each other. The orientation of the spring w.r.t. the initial velocity is shown in diagram. What is the relative velocity of separation in $ms^{-1}$ , after the particles lose contact? ................$m/s$
$3.88$
$22$
$1.88$
$0$
A spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring some elongation and released.
Give the example of variable force. Write the formula of Hook’s law.
Two springs of spring constants $1500\, N/m$ and $3000\, N/m$ respectively are stretched with the same force. They will have potential energy in the ratio
Two bodies $A$ and $B$ of masses $m$ and $2m$ respectively are placed on a smooth floor. They are connected by a spring. A third body $C$ of mass $m$ moves with velocity $V_0$ along the line joining $A$ and $B$ and collides elastically with $A$ as shown in fig. At a certain instant of time $t_0$ after collision, it is found that instantaneous velocities of $A$ and $B$ are the same. Further at this instant the compression of the spring is found to be $x_0$. Determine the spring constant
This question has Statement $-1$ and Statement $-2$. Of the four choices given after the statements, choose the one that best describes the two statements.
If two springs $S_1$ and $S_2$ of force constants $k_1$ and $k_2$, respectively, are stretched by the same force, it is found that more work is done on spring $S_1$ than on spring $S_2$.
Statement $-1$: If stretched by the same amount, work done on $S_1$, will be more than that on $S_2$
Statement $-2$ : $k_1 < k_2$.