Assertion : The electrostatic force between the plates of a charged isolated capacitor decreases when dielectric fills whole space between plates.
Reason : The electric field between the plates of a charged isolated capacitance increases when dielectric fills whole space between plates.
If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
If Assertion is correct but Reason is incorrect.
If Assertion is incorrect and Reason is correct.
A parallel plate capacitor having crosssectional area $A$ and separation $d$ has air in between the plates. Now an insulating slab of same area but thickness $d/2$ is inserted between the plates as shown in figure having dielectric constant $K (=4) .$ The ratio of new capacitance to its original capacitance will be,
A capacitor with plate separation $d$ is charged to $V$ volts. The battery is disconnected and a dielectric slab of thickness $\frac{d}{2}$ and dielectric constant ' $2$ ' is inserted between the plates. The potential difference across its terminals becomes
A container has a base of $50 \mathrm{~cm} \times 5 \mathrm{~cm}$ and height $50 \mathrm{~cm}$, as shown in the figure. It has two parallel electrically conducting walls each of area $50 \mathrm{~cm} \times 50 \mathrm{~cm}$. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant $3$ at a uniform rate of $250 \mathrm{~cm}^3 \mathrm{~s}^{-1}$. What is the value of the capacitance of the container after $10$ seconds? [Given: Permittivity of free space $\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]
In a medium of dielectric constant $K$, the electric field is $\vec E$ . If ${ \varepsilon _0}$ is permittivity of the free space, the electric displacement vector is
Three capacitors $A,B$ and $C$ are connected with battery $emf\, \varepsilon $. All capacitors are identical initially. If dielectric slab is inserted between plates of capacitor $A$ slowy with help of external force then