At $25\,^o C$, the dissociation constant of a base $BOH$ is $1.0 \times {10^{ - 12}}$. The concentration of Hydroxyl ions in $0.01\, M$ aqueous solution of the base would be
$2.0 \times {10^{ - 6}}\,mol\,{L^{ - 1}}$
$1.0 \times {10^{ - 5}}\,mol\;{L^{ - 1}}$
$1.0 \times {10^{ - 6}}\,mol\,{L^{ - 1}}$
$1.0 \times {10^{ - 7}}\,mol\;{L^{ - 1}}$
Which among the given acids has lowest $pKa$ value
Calculate $\left[ {{S^{ - 2}}} \right]$ and $\left[ {H{S^{ - 2}}} \right]$ of the solution which contain$0.1$ $M$ ${H_2}S$ and $0.3$ $M$ $HCl$.
[ ${H_2}S$ of ${K_a}\left( 1 \right) = 1.0 \times {10^{ - 7}}$ and ${K_a}\left( 2 \right) = 1.3 \times {10^{ - 13}}$ ]
The $ pH$ of $ 0.1$ $M$ acetic acid is $3$, the dissociation constant of acid will be
Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)
In $20\,\, ml \,\,0.4 \,M-HA$ solution, $80\,\, ml$ water is added. Assuming volume to be additive, the $pH$ of final solution is
$(K_a \,\,of\,\, HA = 4 \times 10^{-7} ,\, log\,2 = 0.3)$