Gujarati
6-2.Equilibrium-II (Ionic Equilibrium)
normal

The molar conductivity of a solution of a weak acid $HX (0.01\ M )$ is $10$ times smaller than the molar conductivity of a solution of a weak acid $HY (0.10 \ M )$. If $\lambda_{ X }^0 \approx \lambda_{ Y ^{-}}^0$, the difference in their $pK _{ a }$ values, $pK _{ a }( HX )- pK _{ a }( HY )$, is (consider degree of ionization of both acids to be $\ll 1$ )

A

$1$

B

$2$

C

$3$

D

$4$

(IIT-2015)

Solution

$HX \rightleftharpoons H ^{+}+ X ^{-}$

$Ka =\frac{\left[ H ^{+}\right]\left[ X ^{-}\right]}{[ HX ]}$

$HY \rightleftharpoons H ^{+}+ Y ^{-}$

$Ka =\frac{\left[ H ^{+}\right]\left[ Y ^{-}\right]}{[ HY ]}$

$\Lambda_{ m } \text { for } HX =\Lambda_{ m _2}$

$\Lambda_{ m } \text { for } HY =\Lambda_{ m _2}$

$\Lambda_{ m _1}=\frac{1}{10} \Lambda_{ m _2}$

$Ka _2= C ^2$

$Ka _1= C _1 \times\left(\frac{\Lambda_{ m _1}}{\Lambda_{ m _1}^0}\right)^2$

$Ka _2= C _2 \times\left(\frac{\Lambda_{ m _2}}{\Lambda_{ m _2}^0}\right)^2$

$\frac{ Ka _1}{ Ka _2}=\frac{ C _1}{ C _2} \times\left(\frac{\Lambda_{ m _1}}{\Lambda_{ m _2}}\right)^2=\frac{0.01}{0.1} \times\left(\frac{1}{10}\right)^2=0.001$

$pKa _1- pKa _2=3$

Standard 11
Chemistry

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.