At a point $20\, cm$ from the centre of a uniformly charged dielectric sphere of radius $10\, cm$, the electric field is $100\, V/m$. The electric field at $3\, cm$ from the centre of the sphere will be.......$V/m$

  • A

    $150$

  • B

    $125$

  • C

    $120$

  • D

    $0$

Similar Questions

An electron is moving under the influence of the electric field of a uniformly charged infinite plane sheet $S$ having surface charge density $+\sigma$. The electron at $t=0$ is at a distance of $1 \mathrm{~m}$ from $S$ and has a speed of $1 \mathrm{~m} / \mathrm{s}$. The maximum value of $\sigma$ if the electron strikes $S$ at $t=1 \mathrm{~s}$ is $\alpha\left[\frac{\mathrm{m} \in_0}{\mathrm{e}}\right] \frac{\mathrm{C}}{\mathrm{m}^2}$ the value of $\alpha$ is

  • [JEE MAIN 2024]

Shown in the figure are two point charges $+Q$ and $-Q$ inside the cavity of a spherical shell. The charges are kept near the surface of the cavity on opposite sides of the centre of the shell. If $\sigma _1$ is the surface charge on the inner surface and $Q_1$ net charge on it and $\sigma _2$ the surface charge on the outer surface and $Q_2$ net charge on it then

  • [JEE MAIN 2015]

Let $P\left( r \right) = \frac{Q}{{\pi {R^4}}}r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point $P$ inside the sphere at distance $r_1$ from the centre of the sphere, the magnitude of electric field is

Electric field at a point varies as ${r^o}$ for

An early model for an atom considered it to have a positively charged point nucleus of charge $Ze$, surrounded by a uniform density of negative charge up to a radius $R$. The atom as a whole is neutral. For this model, what is the electric field at a distance $r$ from the nucleus?