Gujarati
Hindi
13.Nuclei
medium

At time $t = 0, N_1$ nuclei of decay constant $\lambda _1 \,\& \,N_2$ nuclei of decay constant $\lambda _2$ are mixed . The decay rate of the mixture is :

A

${N_1}{N_2}{e^{ - \left( {{\lambda _1} + {\lambda _2}} \right)t}}$

B

$ + \left( {\frac{{{N_1}}}{{{N_2}}}} \right){e^{ - \left( {{\lambda _1} - {\lambda _2}} \right)t}}$

C

$ + ({N_1}{\lambda _1}{e^{ - {\lambda _1}t}} + {N_2}{\lambda _2}{e^{ - {\lambda _2}t}})$

D

$ + {N_1}{\lambda _1}{N_2}{\lambda _2}{e^{ - \left( {{\lambda _1} + {\lambda _2}} \right)t}}$

Solution

Decay rate of one particle only depends on its number od atoms but not on the other particles.So the total rate will be the addition of the rates of two compounds.

No. of atoms of first compound at any time $-N_{1} e^{-d_{1} t}$

No. of atoms of $2^{\text {nd }}$ compound at any time $=N_{1} e^{-\lambda_{2} t}$

we know that $\frac{d N}{d t}=\lambda N$

decay rate of $1^{st}$ compound $=\lambda_{1} N_{1} e^{-\lambda_{1} t}$

decay rate of $2^{\text {nd }}$ compound $=\lambda_{2} N_{2} e^{-\lambda_{2} t}$

Total rate of mixture $=\lambda_{1} N_{1} e^{-\lambda_{1} t}+\lambda_{2} N_{2} e^{-\lambda_{2} t}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.