सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
$\Delta=\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|$
Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3},$ we have:
$\Delta=\left|\begin{array}{ccc}2(x+y+z) & x & y \\ 2(x+y+z) & y+z+2 x & y \\ 2(x+y+z) & x & z+x+2 y\end{array}\right|$
$=2(x+y+z)\left|\begin{array}{ccc}1 & x & y \\ 1 & y+z+2 x & y \\ 1 & x & z+x+2 y\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1},$ we have:
$\Delta=2(x+y+z)\left|\begin{array}{ccc}1 & x & y \\ 0 & x+y+z & 0 \\ 0 & 0 & x+y+z\end{array}\right|$
$=2(x+y+z)\left|\begin{array}{lll}1 & x & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
Expanding along $R_{3},$ we have:
$\Delta=2(x+y+z)^{3}(1)(1-0)=2(x+y+z)^{3}$
Hence, the given result is proved.
$\left| {\,\begin{array}{*{20}{c}}{a + b}&{b + c}&{c + a}\\{b + c}&{c + a}&{a + b}\\{c + a}&{a + b}&{b + c}\end{array}\,} \right| = K\,\,\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|\,,$ तो $K = $
यदि $\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ (a+\lambda)^{2} & (b+\lambda)^{2} & (c+\lambda)^{2} \\ (a-\lambda)^{2} & (b-\lambda)^{2} & (c-\lambda)^{2}\end{array}\right|=k \lambda\left|\begin{array}{ccc}a^{2} & b^{2} & c^{2} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|, \lambda \neq 0$ है, तो $k$ बराबर है
$\left| {\,\begin{array}{*{20}{c}}{a + b}&{a + 2b}&{a + 3b}\\{a + 2b}&{a + 3b}&{a + 4b}\\{a + 4b}&{a + 5b}&{a + 6b}\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}{{5^2}}&{{5^3}}&{{5^4}}\\{{5^3}}&{{5^4}}&{{5^5}}\\{{5^4}}&{{5^5}}&{{5^7}}\end{array}\,} \right|$ का मान है
$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = $