નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\Delta=\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|$

Applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3},$ we have:

$\Delta=\left|\begin{array}{ccc}2(x+y+z) & x & y \\ 2(x+y+z) & y+z+2 x & y \\ 2(x+y+z) & x & z+x+2 y\end{array}\right|$

$=2(x+y+z)\left|\begin{array}{ccc}1 & x & y \\ 1 & y+z+2 x & y \\ 1 & x & z+x+2 y\end{array}\right|$

Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1},$ we have:

$\Delta=2(x+y+z)\left|\begin{array}{ccc}1 & x & y \\ 0 & x+y+z & 0 \\ 0 & 0 & x+y+z\end{array}\right|$

$=2(x+y+z)\left|\begin{array}{lll}1 & x & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$

Expanding along $R_{3},$ we have:

$\Delta=2(x+y+z)^{3}(1)(1-0)=2(x+y+z)^{3}$

Hence, the given result is proved.

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{b + c}&{c + a}&{a + b}\\{b + c - a}&{c + a - b}&{a + b - c}\end{array}\,} \right|$ = . .

જો $\left| {\,\begin{array}{*{20}{c}}{y + z}&x&y\\{z + x}&z&x\\{x + y}&y&z\end{array}\,} \right| = k(x + y + z){(x - z)^2}$, તો $k = $

જો વિધેય $f :\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R ,$  :

$f (\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$ ની ન્યૂનતમ અને મહત્તમ કિમતો અનુક્રમે $m$ અને $M$ હોય તો $( m , M )$ ની કિમત શોધો 

  • [JEE MAIN 2020]

જો $a+x=b+y=c+z+1,$ જ્યાં $a, b, c, x, y, z$ એ શૂન્યેતર ભિન્ન વાસ્તવિક સંખ્યાઓ હોય તો $\left|\begin{array}{lll}x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c\end{array}\right|$ ની કિમત શોધો 

  • [JEE MAIN 2020]

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી  સાબિત કરો કે, $\left|\begin{array}{ccc}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)$