Calculate the order of the reaction in $A$ and $B$

       $A$

       $(mol/l)$

      $B$

     $(mol/l)$

   Rate
       $0.05$       $0.05$  $1.2\times 10^{-3}$
       $0.10$       $0.05$  $2.4\times 10^{-3}$
       $0.05$       $0.10$  $1.2\times 10^{-3}$

  • A

    $1$ and $0$

  • B

    $1$ and $1$

  • C

    $0$ and $1$

  • D

    none of these

Similar Questions

For the reaction system $2NO(g) + {O_2}(g) \to 2N{O_2}(g)$ volume is suddenly produced to half its value by increasing the pressure on it. If the reaction is of first order with respect to $O_2$ and second order with respect to $NO,$ the rate of reaction will

  • [AIEEE 2003]

Which one of the following statement for order of reaction is not correct ?

Select the rate law that corresponds to the data shown for the following reaction $A+ B\to C$

  Expt. No.   $(A)$  $(B)$  Initial Rate
  $1$   $0.012$  $0.035$  $0.10$
  $2$   $0.024$  $0.070$  $0.80$
  $3$

  $0.024$

 $0.035$  $0.10$
  $4$   $0.012$  $0.070$  $0.80$

  • [AIIMS 2015]

The rate of dissappearance of $MnO_4^-$ in the following reaction is $4.56 \times 10^{-3}\, M/s$

$2MnO_4^-+ 10I^-+ 16H^+ \to 2Mn^{2+} + 5I_2 + 8 H_2O$

The rate of apperance of $I_2$ is

The rate of certain reaction depends on concentration according to the equation $\frac{{ - dc}}{{dt}}\, = \,\frac{{{K_1}C}}{{1 + {K_2}C}},$ what is the order, when concentration $(c)$ is very-very high