Can error be completely eliminated ?

Similar Questions

Quantity $Z$ varies with $x$ and $y$ , according to given equation $Z = x^2y - xy^2$ , where $x = 3.0 \pm 0.1$ and $y = 2.0 \pm 0.1$ . The value of $Z$ is 

Two resistors of resistances $R_1 = (300 \pm 3) \,\Omega $ and $R_2 = (500 \pm 4)$ are connected in series. The equivalent resistance of the series combination is

In a simple pendulum experiment, the maximum percentage error in the measurement of length is $2\%$ and that in acceleration due to gravity $g$ is $4\%$. Then the maximum percentage error in determination of the time-period is

Students $I$, $II$ and $III$ perform an experiment for measuring the acceleration due to gravity $(g)$ using a simple pendulum.

They use different lengths of the pendulum and /or record time for different number of oscillations. The observations are shown in the table.

Least count for length $=0.1 \mathrm{~cm}$

Least count for time $=0.1 \mathrm{~s}$

Student Length of the pendulum $(cm)$ Number of oscillations $(n)$ Total time for $(n)$ oscillations $(s)$ Time period $(s)$
$I.$ $64.0$ $8$ $128.0$ $16.0$
$II.$ $64.0$ $4$ $64.0$ $16.0$
$III.$ $20.0$ $4$ $36.0$ $9.0$

If $\mathrm{E}_{\mathrm{I}}, \mathrm{E}_{\text {II }}$ and $\mathrm{E}_{\text {III }}$ are the percentage errors in g, i.e., $\left(\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100\right)$ for students $\mathrm{I}, \mathrm{II}$ and III, respectively,

  • [IIT 2008]

The radius ( $\mathrm{r})$, length $(l)$ and resistance $(\mathrm{R})$ of a metal wire was measured in the laboratory as

$\mathrm{r}=(0.35 \pm 0.05) \mathrm{cm}$

$\mathrm{R}=(100 \pm 10) \mathrm{ohm}$

$l=(15 \pm 0.2) \mathrm{cm}$

The percentage error in resistivity of the material of the wire is :

  • [JEE MAIN 2024]