Charges $-q,\, q,\,q$ are placed at the vertices $A$, $B$, $C$ respectively of an equilateral triangle of side $'a'$ as shown in the figure. If charge $-q$ is released keeping remaining two charges fixed, then the kinetic energy of charge $(-q)$ at the instant when it passes through the mid point $M$ of side $BC$ is 

818-757

  • A

    $\frac{{{q^2}}}{{8\pi { \in _0}a}}$

  • B

    $\frac{{{q^2}}}{{4\pi { \in _0}a}}$

  • C

    $\frac{{{q^2}}}{{2\pi { \in _0}a}}$

  • D

    $\frac{{{q^2}}}{{\pi { \in _0}a}}$

Similar Questions

$(a)$ Calculate the potential at a point $P$ due to a charge of $4 \times 10^{-7}\; C$ located $9 \;cm$ away.

$(b)$ Hence obtain the work done in bringing a charge of $2 \times 10^{-9} \;C$ from infinity to the point $P$. Does the answer depend on the path along which the charge is brought?

A positively charged ring is in $y-z$ plane with its centre at origin. A positive test charge $q_0$, held at origin is released along $x$-axis, then its speed

Hydrogen ion and singly ionized helium atom are accelerated, from rest, through the same potential difference. The ratio of final speeds of hydrogen and helium ions is close to......

  • [JEE MAIN 2020]

If one of the two electrons of a $H _{2}$ molecule is removed, we get a hydrogen molecular ion $H _{2}^{+}$. In the ground state of an $H _{2}^{+}$, the two protons are separated by roughly $1.5\;\mathring A,$ and the electron is roughly $1 \;\mathring A$ from each proton. Determine the potential energy of the system. Specify your choice of the zero of potential energy.

Positive and negative point charges of equal magnitude are kept at $\left(0,0, \frac{a}{2}\right)$ and $\left(0,0, \frac{-a}{2}\right)$, respectively. The work done by the electric field when another positive point charge is moved from $(-a, 0,0)$ to $(0, a, 0)$ is

  • [IIT 2007]