2. Electric Potential and Capacitance
hard

Two positive charges of magnitude $q$ are placed at the ends of a side $1$ of a square of side $2a$. Two negative charges of the same magnitude are kept at the other corners. Starting from rest, if a charge $Q$, moves from the middle of side $1$ to the centre of square, its kinetic energy at the centre of square is

A

$\frac{1}{{4\pi \,\,{\varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\left( {1\,\, - \,\frac{1}{{\sqrt 5 }}} \right)$

B

$zero$

C

$\frac{1}{{4\pi \,\,{\varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\,\left( {1\,\, + \,\,\frac{1}{{\sqrt 5 }}} \right)$

D

$\frac{1}{{4\pi \,\,{ \varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\left( {1\,\, - \,\frac{2}{{\sqrt 5 }}} \right)$

(AIEEE-2011)

Solution

Initial potential of the charge,

$V_{A}=\frac{2 k q}{a}-\frac{2 k q}{a \sqrt{5}}$

$\Rightarrow V_{A}=\frac{1}{4 \pi E} \frac{2 q}{a}\left(1-\frac{1}{\sqrt{5}}\right)$

(Here potential due to each $q=\frac{k q}{a}$ and potential due to each $-q=\frac{-k q}{a \sqrt{5}}$)

Final potential of the charge

$V_{B}=0$

( $\because$ Point $B$ is equidistant from all the four charges)

$\therefore$ Using work energy theorem,

$\left(W_{A B}\right)_{\text {electric }}=Q\left(V_{A}-V_{B}\right)$

$=\frac{2 q Q}{4 \pi E_{0} a}\left[1-\frac{1}{\sqrt{5}}\right]$

$=\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \frac{2 Q q}{a}\left[1-\frac{1}{\sqrt{5}}\right]$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.