Charges $4Q$, $q$ and $Q$ and placed along $x$-axis at positions $x = 0,x = l/2$ and $x = l$, respectively. Find the value of $q$ so that force on charge $Q$ is zero

  • A

    $Q$

  • B

    $Q / 2$

  • C

    $-Q / 2$

  • D

    $-Q$

Similar Questions

A charge $q$ is placed at the centre of the line joining two equal charges $Q$. The system of the three charges will be in equilibrium, if $q$ is equal to

  • [AIIMS 2017]

Three point charges $q_1, q_2, q_3$ are placed at the vertices of a triangle if force on $q_1$ and $q_2$ are $\left( {2\hat i - \hat j} \right)\,N$ and $\left( {\hat i + 3\hat j} \right)\,N$, respeactively, then what will be force on $q_3$ ?

Identify the wrong statement in the following. Coulomb's law correctly describes the electric force that

Two charges $\mathrm{q}$ and $-3\mathrm{q}$ are placed fixed on $x-$ axis separated by distance $\mathrm{'d'}$. Where should a third charge $2\mathrm{q}$ be placed such that it will not experience any force ?

Two equally charged, identical metal spheres $A$ and $B$ repel each other with a force '$F$'. The spheres are kept fixed with a distance '$r$' between them. A third identical, but uncharged sphere $C$ is brought in contact with $A$ and then placed at the mid-point of the line joining $A$ and $B$. The magnitude of the net electric force on $C$ is