Circles $x^2 + y^2 + 4x + d = 0, x^2 + y^2 + 4fy + d = 0$ touch each other, if

  • A

    $f\,\, = \,\, \pm \,\,2\,\sqrt {4\,\, + \;\,d} $

  • B

    $f\,\, = \,\, \pm \,\,\frac{2}{{\sqrt {4\,\, - \,\,d} }}$

  • C

    $f\,\, = \,\, \pm \,\,\sqrt {\frac{d}{{\left( {4\,\, + \;\,d} \right)}}} $

  • D

    $f\,\, = \,\, \pm \,\,\sqrt {\frac{d}{{\left( {4\,\, - \,\,d} \right)}}} $

Similar Questions

If the line $3x - 4y = \lambda $ touches the circle ${x^2} + {y^2} - 4x - 8y - 5 = 0$, then $\lambda $ is equal to

The equation of the normal to the circle ${x^2} + {y^2} - 2x = 0$ parallel to the line $x + 2y = 3$ is

If line $ax + by = 0$ touches ${x^2} + {y^2} + 2x + 4y = 0$ and is a normal to the circle ${x^2} + {y^2} - 4x + 2y - 3 = 0$, then value of $(a,b)$ will be

The tangent at $P$, any point on the circle ${x^2} + {y^2} = 4$, meets the coordinate axes in $A$ and $B$, then

From any point on the circle ${x^2} + {y^2} = {a^2}$ tangents are drawn to the circle ${x^2} + {y^2} = {a^2}{\sin ^2}\alpha $, the angle between them is