Consider a quadratic equation $ax^2 + bx + c = 0,$ where $2a + 3b + 6c = 0$ and let $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$

Statement $1:$ The quadratic equation has at least one root in the interval $(0, 1).$

Statement $2:$ The Rolle's theorem is applicable to function $g(x)$ on the interval $[0, 1 ].$

  • [AIEEE 2012]
  • A

    Statement $1$ is false, Statement $2$ is true.

  • B

    Statement $1$ is true, Statement $2$ is false.

  • C

    Statement $1$ is true, Statement $2$ is true,Statement $2$ is not a correct explanation for Statement $1.$

  • D

    Statement $1$ is true, Statement $2$ is true, Statement $2$ is a correct explanation for Statement $1.$

Similar Questions

Examine the applicability of Mean Value Theorem:

$(i)$ $f(x)=[x]$ for $x \in[5,9]$

$(ii)$ $f(x)=[x]$ for $x \in[-2,2]$

$(iii)$ $f(x)=x^{2}-1$ for $x \in[1,2]$

If the Rolle's theorem holds for the function $f(x) = 2x^3 + ax^2 + bx$ in the interval $[-1, 1 ]$ for the point $c = \frac{1}{2}$ , then the value of $2a + b$ is

  • [JEE MAIN 2015]

The value of $\left[ {\frac{{\log \left( {\frac{x}{e}} \right)}}{{x - \,e}}} \right]\,\forall x\, > \,e$ is equal to (where [.] denotes greatest integer function)

Consider  $f (x) = | 1 - x | \,;\,1 \le x \le 2 $   and $g (x) = f (x) + b sin\,\frac{\pi }{2}\,x$, $1 \le x \le 2$  then which of the following is correct ?

If the function  $f(x) =  - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals