Consider a quadratic equation $ax^2 + bx + c = 0,$ where $2a + 3b + 6c = 0$ and let $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$
Statement $1:$ The quadratic equation has at least one root in the interval $(0, 1).$
Statement $2:$ The Rolle's theorem is applicable to function $g(x)$ on the interval $[0, 1 ].$
Statement $1$ is false, Statement $2$ is true.
Statement $1$ is true, Statement $2$ is false.
Statement $1$ is true, Statement $2$ is true,Statement $2$ is not a correct explanation for Statement $1.$
Statement $1$ is true, Statement $2$ is true, Statement $2$ is a correct explanation for Statement $1.$
Which of the following function can satisfy Rolle's theorem ?
If for $f(x) = 2x - {x^2}$, Lagrange’s theorem satisfies in $[0, 1]$, then the value of $c \in [0,\,1]$ is
lf Rolle's theorem holds for the function $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$ at the point $x = \frac {1}{2},$ then $2b+ c$ equals
If $f:R \to R$ and $f(x)$ is a polynomial function of degree ten with $f(x)=0$ has all real and distinct roots. Then the equation ${\left( {f'\left( x \right)} \right)^2} - f\left( x \right)f''\left( x \right) = 0$ has
In the mean value theorem, $f(b) - f(a) = (b - a)f'(c)$if $a = 4$, $b = 9$ and $f(x) = \sqrt x $ then the value of $c$ is