- Home
- Standard 11
- Mathematics
Consider a triangle $\mathrm{ABC}$ having the vertices $\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$ and $\mathrm{C}(\gamma, \delta)$ and angles $\angle \mathrm{ABC}=\frac{\pi}{6}$ and $\angle \mathrm{BAC}=\frac{2 \pi}{3}$. If the points $\mathrm{B}$ and $\mathrm{C}$ lie on the line $\mathrm{y}=\mathrm{x}+4$, then $\alpha^2+\gamma^2$ is equal to....................
$46$
$13$
$15$
$14$
Solution

Equation of line passes through point $\mathrm{A}(1,2)$ which makes angle $\frac{\pi}{6}$ from $y=x+4$ is
$ \mathrm{y}-2=\frac{1 \pm \tan \frac{\pi}{6}}{1 \mp \tan \frac{\pi}{6}}(\mathrm{x}-1) $
$ \mathrm{y}-2=\frac{\sqrt{3} \pm 1}{\sqrt{3} \mp 1}(\mathrm{x}-1)$
$\oplus$
$y-2=(2+\sqrt{3})(x-1) $
solve with $ y=x+4 $
$x+2=(2+\sqrt{3}) x-2-\sqrt{3} $
$x=\frac{4+\sqrt{3}}{1+\sqrt{3}}$
$\Theta$
$y-2=(2-\sqrt{3})(x-1)$
solve with $\mathrm{y}=\mathrm{x}+4$
$x+2=(2-\sqrt{3}) x-2+\sqrt{3} $
$x=\frac{4-\sqrt{3}}{1-\sqrt{3}}$
$ \alpha^2+\gamma^2=\left(\frac{4+\sqrt{3}}{1+\sqrt{3}}\right)^2+\left(\frac{4-\sqrt{3}}{1-\sqrt{3}}\right)^2 $
$ \alpha^2+\gamma^2=14$