Let $PS$ be the median of the triangle with vertices $P(2,2) , Q(6,-1) $ and $R(7,3) $. The equation of the line passing through $(1,-1) $ and parallel to $PS $ is :
$4x + 7y + 3 = 0$
$\;2x - 9y - 11 = 0$
$\;4x - 7y - 11 = 0$
$\;2x + 9y + 7 = 0$
A point starts moving from $(1, 2)$ and its projections on $x$ and $y$ - axes are moving with velocities of $3m/s$ and $2m/s$ respectively. Its locus is
The equation of the lines on which the perpendiculars from the origin make ${30^o}$ angle with $x$-axis and which form a triangle of area $\frac{{50}}{{\sqrt 3 }}$ with axes, are
Let $PQR$ be a right angled isosceles triangle, right angled at $P\, (2, 1)$. If the equation of the line $QR$ is $2x + y = 3$, then the equation representing the pair of lines $PQ$ and $PR$ is
The area of the triangle formed by the line $x\sin \alpha + y\cos \alpha = \sin 2\alpha $and the coordinates axes is
Let $b, d>0$. The locus of all points $P(r, \theta)$ for which the line $P$ (where, $O$ is the origin) cuts the line $r \sin \theta=b$ in $Q$ such that $P Q=d$ is