Consider that an ideal gas ($n$ moles) is expanding in a process given by $P = f (V)$, which passes through a point $(V_0, \,p_0)$. Show that the gas is absorbing heat at $(p_0,\, V_0)$ if the slope of the curve $P = f (V)$ is larger than the slope of the adiabatic passing through $(p_0,\, V_0)$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Slope of graph $\mathrm{P}=f(\mathrm{~V})$ at point $\left(\mathrm{V}_{0}, p_{0}\right)=f\left(\mathrm{~V}_{0}\right)$. For adiabatic process $\mathrm{PV}^{\gamma}=\mathrm{K}$ (Constant)

$\therefore$ At point $\left(\mathrm{V}_{0}, \mathrm{P}_{0}\right) \mathrm{P}_{0} \mathrm{~V}_{0}^{\gamma}=\mathrm{k}$

$\therefore \mathrm{P}_{0}=\frac{k}{\mathrm{~V}_{0}^{\gamma}}$

$\therefore d \mathrm{P}_{0}=k(-\gamma) \mathrm{V}_{0}^{-\gamma-1} \cdot d \mathrm{~V}_{0}$

$\therefore \frac{d \mathrm{P}_{0}}{d \mathrm{~V}_{0}}=-\gamma \frac{k}{\mathrm{~V}_{0}^{\gamma}} \times \frac{1}{\mathrm{~V}_{0}}$

$\therefore$ Slope $=-\gamma \frac{\mathrm{P}_{0}}{\mathrm{~V}_{0}}$

Now $d \mathrm{Q}=d \mathrm{U}+d \mathrm{~W} \quad\left[\because \frac{k}{\mathrm{~V}_{0}^{\gamma}}=\mathrm{P}_{0}\right]$ $.....(2)$

and $\mathrm{PV}=n \mathrm{RT}$

$\therefore \mathrm{T}=\frac{\mathrm{PV}}{n \mathrm{R}}=\frac{f(\mathrm{~V}) \mathrm{V}}{n \mathrm{R}}$

$\therefore d \mathrm{~T}=\frac{1}{n \mathrm{R}}\left[f(\mathrm{~V}) d \mathrm{~V}+\mathrm{V} f^{\prime}(\mathrm{V}) d \mathrm{~V}\right]$

$\quad=\frac{1}{n \mathrm{R}}\left[f(\mathrm{~V})+\mathrm{V} f^{\prime}(\mathrm{V})\right] d \mathrm{~V} \ldots . .(3)$

$\Rightarrow \mathrm{Equ} .(2) d \mathrm{Q}=n \mathrm{C}_{\mathrm{V}} \times \frac{1}{n \mathrm{R}}\left[f(\mathrm{~V})+\mathrm{V} f^{\prime}(\mathrm{V})\right] d \mathrm{~V}$

$\therefore\left[\frac{d \mathrm{Q}}{d \mathrm{~V}}\right]_{\mathrm{V}}=\mathrm{V}_{0}$

Now, $\mathrm{C}_{\mathrm{P}}-\frac{\mathrm{C}_{\mathrm{V}}}{\mathrm{R}}\left[f\left(\mathrm{~V}_{\mathrm{V}}\right)+\mathrm{R}_{0} f^{\prime}\left(\mathrm{V}_{0}\right)\right]+f\left(\mathrm{~V}_{0}\right)$

$\therefore \frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}-1=\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{V}}}$

$\quad \gamma-1=\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{V}}}$

$\therefore \frac{\mathrm{C}_{\mathrm{V}}}{\mathrm{R}}=\frac{1}{\gamma-1}$ $....(5)$

Similar Questions

Two gases have the same initial pressure, volume and temperatue. They expand to the same final volume, one adiabatically and the other isothermally, if the two gases are compressed to the same final volume

Two moles of an ideal monoatomic gas at ${27^o}C$ occupies a volume of $V.$ If the gas is expanded adiabatically to the volume $2V,$ then the work done by the gas will be ....... $J$ $[\gamma = 5/3,\,R = 8.31J/mol\,K]$

A monoatomic ideal gas, initially at temperature ${T_1},$ is enclosed in a cylinder fitted with a frictionless piston. The gas is allowed to expand adiabatically to a temperature. ${T_2}$ by releasing the piston suddenly. If ${L_1}$ and ${L_2}$ are the lengths of the gas column before and after expansion respectively, then ${T_1}/{T_2}$ is given by

  • [IIT 2000]

In an adiabatic change, the pressure $P$ and temperature $T$ of a monoatomic gas are related by the relation $P \propto {T^C}$, where $C$ equals

  • [AIIMS 2007]

Two different adiabatic paths for the same gas intersect two isothermal curves as shown in$P-V$ diagram. The relation between the ratio $\frac{V_a}{V_d}$ and the ratio $\frac{V_b}{V_c}$ is:

  • [JEE MAIN 2024]