Consider the following reaction,
$2 H _2( g )+2 NO ( g ) \rightarrow N _2( g )+2 H _2 O ( g )$
which following the mechanism given below:
$2 NO ( g ) \underset{ k _{-1}}{\stackrel{ k _1}{\rightleftharpoons}} N _2 O _2( g )$
$N _2 O _2( g )+ H _2( g ) \stackrel{ k _2}{\rightleftharpoons} N _2 O ( g )+ H _2 O ( g )$
$N _2 O ( g )+ H _2( g ) \stackrel{ k _3}{\rightleftharpoons} N _2( g )+ H _2 O ( g )$
(fast equilibrium)
(slow reaction)
(fast reaction)
The order of the reaction is
$3$
$4$
$5$
$6$
The hypothetical reaction : $2A + B \to C + D$ is catalyzed by $E$ as indicated in the possible mechanism below -
Step$-1$ : ${\text{A + E }} \rightleftharpoons AE$ (fast)
Step$-2$ :${\text{AE + A }} \to {A_2} + E$ (slow)
Step$-3$ :${{\text{A}}_2}{\text{ + B }} \to {\text{D}}$ (fast)
what rate law best agrees with this mechanism
The variation of the rate of an enzyme catalyzed reaction with substrate concentration is correctly represented by graph
Decay of $_{92}{U^{235}}$is .....order reaction
The experimental data for decomposition of $N _{2} O _{5}$
$\left[2 N _{2} O _{5} \rightarrow 4 NO _{2}+ O _{2}\right]$
in gas phase at $318 \,K$ are given below:
$t/s$ | $0$ | $400$ | $800$ | $1200$ | $1600$ | $2000$ | $2400$ | $2800$ | $3200$ |
${10^2} \times \left[ {{N_2}{O_5}} \right]/mol\,\,{L^{ - 1}}$ | $1.63$ | $1.36$ | $1.14$ | $0.93$ | $0.78$ | $0.64$ | $0.53$ | $0.43$ | $0.35$ |
$(i)$ Plot $\left[ N _{2} O _{5}\right]$ against $t$
$(ii)$ Find the half-life period for the reaction.
$(iii)$ Draw a graph between $\log \left[ N _{2} O _{5}\right]$ and $t$
$(iv)$ What is the rate law $?$
$(v)$ Calculate the rate constant.
$(vi)$ Calculate the half-life period from $k$ and compare it with $(ii)$.
For the reaction $A + B \to $ products, what will be the order of reaction with respect to $A$ and $B$ ?
Exp. | $[A]\,(mol\,L^{-1})$ | $[B]\,(mol\,L^{-1})$ | Initial rate $(mol\,L^{-1}\,s^{-1})$ |
$1.$ | $2.5\times 10^{-4}$ | $3\times 10^{-5}$ | $5\times 10^{-4}$ |
$2.$ | $5\times 10^{-4}$ | $6\times 10^{-5}$ | $4\times 10^{-3}$ |
$3.$ | $1\times 10^{-3}$ | $6\times 10^{-5}$ | $1.6\times 10^{-2}$ |