Consider the sets $X$ and $Y$ of $X = \{ $ Ram , Geeta, Akbar $\} $ and $Y = \{ $ Geeta, David, Ashok $\} $ Find $X \cap Y$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We see that element $"Geeta''$ is the only element common to both. Hence, $X \cap Y = \{ $ Geeta $\} $

Similar Questions

Which of the following pairs of sets are disjoint 

$\{a, e, i, o, u\}$ and $\{c, d, e, f\}$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$B \cap D$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap D$

Consider the following relations :

$(1) \,\,\,A - B = A - (A \cap B)$

$(2) \,\,\,A = (A \cap B) \cup (A - B)$

$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$

which of these is/are correct

Show that $A \cap B=A \cap C$ need not imply $B = C$