If $A, B$ and $C$ are any three sets, then $A -(B \cup C)$ is equal to
$(A -B) \cup (A -C)$
$(A -B) \cap (A -C)$
$(A -B) \cup C$
$(A -B) \cap C$
If $A, B$ and $C$ are any three sets, then $A - (B \cap C)$ is equal to
Using that for any sets $\mathrm{A}$ and $\mathrm{B},$
$A \cap(A \cup B)=A$
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $A \cap D$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$B-D$
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $
$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $