Consider the system of linear equations ${a_1}x + {b_1}y + {c_1}z + {d_1} = 0$, ${a_2}x + {b_2}y + {c_2}z + {d_2} = 0$ and ${a_3}x + {b_3}y + {c_3}z + {d_3} = 0$. Let us denote by $\Delta (a,b,c)$ the determinant $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ if $\Delta (a,b,c) \ne 0$, then the value of $x$ in the unique solution of the above equations is

  • A

    $\frac{{\Delta (bcd)}}{{\Delta (abc)}}$

  • B

    $\frac{{ - \Delta (bcd)}}{{\Delta (abc)}}$

  • C

    $\frac{{\Delta (acd)}}{{\Delta (abc)}}$

  • D

    $ - \frac{{\Delta (abd)}}{{\Delta (abc)}}$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $

The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is

Let the area of the triangle with vertices $A (1, \alpha)$, $B (\alpha, 0)$ and $C (0, \alpha)$ be $4\, sq.$ units. If the point $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear, then $\beta$ is equal to

  • [JEE MAIN 2022]

Find area of the triangle with vertices at the point given in each of the following: $(1,0),(6,0),(4,3)$

The value of the determinant$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 - x}&1\\1&1&{1 + y}\end{array}\,} \right|$is