Consider the following system of equations : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ where $a , b$ and $c$ are real constants. Then the system of equations :
has a unique solution when $5 a =2 b + c$
has infinite number of solutions when $5 a =2 b + c$
has no solution for all $a , b$ and $c$
has a unique solution for all $a , b$ and $c$
$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2} - bc}\\1&b&{{b^2} - ac}\\1&c&{{c^2} - ab}\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}5&3&{ - 1}\\{ - 7}&x&{ - 3}\\9&6&{ - 2}\end{array}\,} \right| = 0$, then $ x$ is equal to
The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if
The number of values of $\alpha$ for which the system of equations: $x+y+z=\alpha$ ; $\alpha x+2 \alpha y+3 z=-1$ ; $x+3 \alpha y+5 z=4$ is inconsistent, is
The values of $x $ in the following determinant equation, $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ are