Consider two carts, of masses $m$ and $2m$ , at rest on an air track. If you push both the carts for $3\,s$ exerting equal force on each, the kinetic energy of the light cart is

  • A

    larger than the kinetic energy of the heavy cart

  • B

    equal to the kinetic energy of the heavy cart

  • C

    smaller than the kinetic energy of the heavy cart

  • D

    Information is not sufficient to decide

Similar Questions

The force acting on a body moving along $x-$ axis varies with the position of the particle as shown in the figure. The body is in stable equilibrium at

Two bodies of masses $m_1$ and $m_2$ are moving with same kinetic energy. If $P_1$ and $P_2$ are their respective momentum, the ratio $\frac{P_1}{P_2}$ is equal to

A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $u$. The force on the body is $mv^2/r$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle?

A uniform chain of length $2\,m$ is kept on a table such that a length $60\,cm$ hangs freely from the edge of the table. The total mass of chain is $4\,kg$. The work done in pulling the entire chain on the table is ............. $\mathrm{J}$ (Take $g = 10\,m/s^2$)

A simple pendulum of mass $200\, gm$ and length $100\, cm$ is moved aside till the string makes an angle of $60^o$ with the vertical. The kinetic and potential energies of the bob, when the string is inclined at $30^o$ to the vertical, are