3 and 4 .Determinants and Matrices
medium

Construct a $2 \times 2$ matrix, $A=\left[a_{ij}\right]$, whose elements are given by :  $a_{i j}=\frac{i}{j}$.

Option A
Option B
Option C
Option D

Solution

$(ii)$ Since it is a $2 \times 2$ matrix

it has $2$ rows and $2$ column.

Let matrix be $A$

Where $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

Now it is given that

$a _{ ij }=\frac{ i }{ j }$

$a_{i j}$ $i=, j=$ $a_{i j}=\frac{(i+j)^2}{2}$
$a_{11}$ $i=1, j=1$ $a_{11}=\frac{1}{1}=1$
$a_{12}$ $i=1, j=2$ $a_{12}=\frac{1}{2}$
$a_{21}$ $i=2, j=1$ $a_{21}=\frac{2}{1}=2$
$a_{22}$ $i=2, j=2$ $a_{22}=\frac{2}{2}=1$

Hence, the required matrix $A$ is

$A\left[\begin{array}{ll}a_-{11} & a_{12} \\a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{ll}1 & \frac{1}{2} \\2 & 1\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.