3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}\alpha &0\\1&1\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}1&0\\5&1\end{array}} \right]$, then value of $\alpha $for which ${A^2} = B$, is

A

$1$

B

$-1$

C

$4$

D

No real values

(IIT-2003)

Solution

(d) ${A^2} = \left[ {\,\begin{array}{*{20}{c}}\alpha &0\\1&1\end{array}\,} \right]\,\left[ {\,\begin{array}{*{20}{c}}\alpha &0\\1&1\end{array}\,} \right] = \left[ {\,\begin{array}{*{20}{c}}{{\alpha ^2}}&0\\{\alpha + 1}&1\end{array}\,} \right]$

Clearly, no real value of $\alpha$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.