Define angular momentum.
A solid cylinder of mass $2\ kg$ and radius $0.2\,m$ is rotating about its own axis without friction with angular velocity $3\,rad/s$. A particle of mass $0.5\ kg$ and moving with a velocity $5\ m/s$ strikes the cylinder and sticks to it as shown in figure. The angular momentum of the cylinder before collision will be ........ $J-s$
A body of mass $5 \mathrm{~kg}$ moving with a uniform speed $3 \sqrt{2} \mathrm{~ms}^{-1}$ in $\mathrm{X}-\mathrm{Y}$ plane along the line $\mathrm{y}=\mathrm{x}+4$.The angular momentum of the particle about the origin will be______________ $\mathrm{kg}\ \mathrm{m} \mathrm{s}^{-1}$.
A ring of mass $M$ and radius $R$ is rotating with angular speed $\omega$ about a fixed vertical axis passing through its centre $O$ with two point masses each of mass $\frac{ M }{8}$ at rest at $O$. These masses can move radially outwards along two massless rods fixed on the ring as shown in the figure. At some instant the angular speed of the system is $\frac{8}{9} \omega$ and one of the masses is at a distance of $\frac{3}{5} R$ from $O$. At this instant the distance of the other mass from $O$ is
$A$ time varying force $F = 2t$ is applied on a spool rolling as shown in figure. The angular momentum of the spool at time $t$ about bottommost point is:
The potential energy of a particle of mass $m$ at a distance $r$ from a fixed point $O$ is given by $\mathrm{V}(\mathrm{r})=\mathrm{kr}^2 / 2$, where $\mathrm{k}$ is a positive constant of appropriate dimensions. This particle is moving in a circular orbit of radius $\mathrm{R}$ about the point $\mathrm{O}$. If $\mathrm{v}$ is the speed of the particle and $\mathrm{L}$ is the magnitude of its angular momentum about $\mathrm{O}$, which of the following statements is (are) true?
$(A)$ $v=\sqrt{\frac{k}{2 m}} R$
$(B)$ $v=\sqrt{\frac{k}{m}} R$
$(C)$ $\mathrm{L}=\sqrt{\mathrm{mk}} \mathrm{R}^2$
$(D)$ $\mathrm{L}=\sqrt{\frac{\mathrm{mk}}{2}} \mathrm{R}^2$