Define the average life of a radioactive sample and obtain its relation to decay constant and half life.
"In radioactive sample the average life time of a nucleus for which the nucleus exists. This time is called average or mean life".
OR
"The time interval, during which the number of nuclei of a radioactive element becomes equal to the $e^{\text {th }}$ part of its original number is called the mean life or average life of that element".
The average life is denoted by $\tau$
$\therefore$ Average life time $\tau=\frac{\text { Sum of life time of all nucleus }}{\text { No. of total nucleus }}$
The relation between average life and decay constant : Suppose at $t=0$ time radioactive sample contains $\mathrm{N}_{0}$ nuclei. After $t$ time the number of nuclei decreases to $\mathrm{N}$ and the number of nuclei which decay in the time interval $t$ to $t+\Delta t$ is $d \mathrm{~N}$.
Since the $d t$ time is very small, the life time of each $d \mathrm{~N}$ nucleus can be taken approximate to $t$ $\therefore$ Total life time of $d \mathrm{~N}$ nucleus $=t d \mathrm{~N}$
$\therefore$ Total life time of all $\mathrm{N}_{0}$ nucleus $=\int_{0}^{\mathrm{N}_{0}} t d \mathrm{~N}$
$\therefore$ Average life time $=\frac{\begin{array}{c}\text { Life time of } \\ \text { all } \mathrm{N}_{0} \text { nucleus }\end{array}}{\mathrm{N}_{0}}$
$\therefore \tau=\frac{1}{\mathrm{~N}_{0}} \int_{0}^{\mathrm{N}_{0}} t d \mathrm{~N}$$...(1)$
But exponential law $\mathrm{N}=\mathrm{N}_{0} e^{-\lambda t}$
$\therefore d \mathrm{~N}=-\lambda \mathrm{N}_{0} e^{-\lambda t} d t$
$\ldots(2)$
$\therefore \tau=\frac{1}{\mathrm{~N}_{0}} \int_{0}^{\mathrm{N}_{0}}-\lambda t \mathrm{~N}_{0} e^{-\lambda t} d t$
(Putting value of equation
$(2)$ in $(1)$)
Now when $\mathrm{N}=\mathrm{N}_{0}$, then $t=0$ and
$\mathrm{N}=0$, then $t=\infty$
The half life of a radioactive substance is $20$ minutes. The approximate time interval $(t_2 - t_1)$ between the time $t_2$ when $\frac{2}{3}$ of it had decayed and time $t_1$ when $\frac{1}{3}$ of it had decayed is ..........$min$
Two radioactive materials $A$ and $B$ have decay constants $25 \lambda$ and $16 \lambda$ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of $B$ to that of $A$ will be "$e$" after a time $\frac{1}{a \lambda}$. The value of $a$ is $......$
Half lives of two radioactive nuclei $A$ and $B$ are $10\, minutes$ and $20\, minutes$, respectively. If, initially a sample has equal number of nuclei, then after $60$ $minutes$ , the ratio of decayed numbers of nuclei $A$ and $B$ will be
The nuclear activity of a radioactive element becomes $\left(\frac{1}{8}\right)^{\text {th }}$ of its initial value in $30\, years.$ The half-life of radioactive element is $....\,years.$
The graph in figure shows how the count-rate $A$ of a radioactive source as measured by a Geiger counter varies with time $t.$ The relationship between $A$ and $t$ is : $($ Assume $ln\,\, 12 = 2.6)$