A car is moving on a straight road with uniform acceleration. The following table gives the speed of the car at various instants of time.
Time $(s)$ | $0$ | $10$ | $20$ | $30$ | $40$ | $50$ |
Speed $\left(m s^{-1}\right)$ | $5$ | $10$ | $15$ | $20$ | $25$ | $30$ |
$(i)$ Draw the speed$-$time graph representing the above set of observations.
$(ii)$ Find the acceleration of the car.
Define distance and displacement. A body covers one complete revolution around a circular park of circumference $176 \,m$ in $4$ minutes. Find the displacement of the body after $6$ minutes.
The distance$-$time graph of a body is parallel to time axis. The body is
How can you find the following ?
$(i)$ Velocity from a displacement$-$time graph.
$(ii)$ Acceleration from velocity$-$time graph.
$(iii)$ Displacement from velocity$-$time graph.
$(iv)$ Velocity from acceleration$-$time graph.
What is the numerical ratio of average velocity to average speed of an object when it is moving along a straight path ?