Derive formula for mutual inductance for two very long coaxial solenoids. Also discuss reciprocity theorem.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider figure which shows two long coaxial solenoids each of length $l$. We denote the radius of the inner solenoid $\mathrm{S}_{1}$ by $r_{1}$ and the number of turns per unit length by $n_{1}$. The corresponding quantities for the outer solenoid $\mathrm{S}_{2}$ are $r_{2}$ and $n_{2}$ respectively. Let $\mathrm{N}_{1}$ and $\mathrm{N}_{2}$ be the total number of turns of coils $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ respectively.

When a current $\mathrm{I}_{2}$ is set up through $\mathrm{S}_{2}$, it in turn sets up a magnetic flux through $\mathrm{S}_{1}$. Let us denote it by $\Phi_{1}$.

The corresponding flux linkage with solenoid $\mathrm{S}_{1}$ is

$\therefore \mathrm{N}_{1} \Phi_{1}=\mathrm{M}_{12} \mathrm{I}_{2} \quad \ldots$ $(1)$

$\mathrm{M}_{12}$ is called the mutual inductance of solenoid $\mathrm{S}_{1}$ with respect to solenoid $\mathrm{S}_{2}$. It is also referred to as the coefficient of mutual induction.

$\mathrm{N}_{1} \Phi_{1}=\mathrm{N}_{1} \mathrm{~A}_{1} \mathrm{~B}_{2}$

$\mathrm{~N}_{1} \Phi_{1}=\left(n_{1} l\right)\left(\pi r_{1}{ }^{2}\right)\left(\mu_{0} n_{2} \mathrm{I}_{2}\right)$

$=\mu_{0} n_{1} n_{2} \pi r_{1}{ }^{2} l \mathrm{I}_{2}$

Where $n_{1} l$ is the total number of turns in solenoid $\mathrm{S}_{1}$. Thus, from equation $(1)$ and $(2)$, $\mathrm{M}_{12}=\mu_{0} n_{1} n_{2} \pi r_{1}{ }^{2} l$

... $(3)$

Note that we neglected the edge effects and considered the magnetic field $\mu_{0} n_{2} I_{2}$ to be uniform throughout the length and width of the solenoid $S_{2}$.

We now consider the reverse case. A current $\mathrm{I}_{1}$ is passed through the solenoid $\mathrm{S}_{1}$ and the flux linkage with coil $\mathrm{S}_{2}$ is,

$\mathrm{N}_{2} \Phi_{2}=\mathrm{M}_{21} \mathrm{I}_{1}$ $\mathrm{M}_{21}$ is called the mutual inductance of solenoid $\mathrm{S}_{2}$ with respect to solenoid $\mathrm{S}_{1}$.

902-s78

Similar Questions

The mutual inductance between two coils is $1.25$ $henry$. If the current in the primary changes at the rate of $80$ $ampere/second,$ then the induced $e.m.f$ in the secondary is......$V$

Two coils of self inductance $2\,\,mH$ and $8\,\,mH$ are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is......$  mH$

  • [AIPMT 2006]

What is the mutual inductance of a two-loop system as shown with centre separation l

Two coils $X$ and $Y$ are placed in a circuit such that when a current changes $2A$ in coil $X,$ the magnetic flux changes by $0.4\,weber$ in $Y$. The value of mutual inductance of the coils....$H$

Two circuits have coefficient of mutual induction of $0.09$ $henry$. Average $e.m.f$. induced in the secondary by a change of current from $0$ to $20$ $ampere$ in $0.006$ $second$ in the primary will be......$V$