Dimensional formula for torque is
${L^2}M{T^{ - 2}}$
${L^{ - 1}}M{T^{ - 2}}$
${L^2}M{T^{ - 3}}$
$LM{T^{ - 2}}$
Match List $I$ with List $II$ :
List $I$ (Physical Quantity) | List $II$ (Dimensional Formula) |
$(A)$ Pressure gradient | $(I)$ $\left[ M ^0 L ^2 T ^{-2}\right]$ |
$(B)$ Energy density | $(II)$ $\left[ M ^1 L ^{-1} T ^{-2}\right]$ |
$(C)$ Electric Field | $(III)$ $\left[ M ^1 L ^{-2} T ^{-2}\right]$ |
$(D)$ Latent heat | $(IV)$ $\left[ M ^1 L ^1 T ^{-3} A ^{-1}\right]$ |
Choose the correct answer from the options given below:
In the relation : $\frac{d y}{d x}=2 \omega \sin \left(\omega t+\phi_0\right)$ the dimensional formula for $\left(\omega t+\phi_0\right)$ is :
Out of the following which pair of quantities do not have same dimensions
The expression $[M{L^2}{T^{ - 2}}]$ represents
$A$ and $B$ possess unequal dimensional formula then following operation is not possible in any case:-