Which of the following is dimensional formula for viscosity?
$[ML^{-1}T^{-2}]$
$[MLT^{-1}]$
$[ML^{-1}T^{-1}]$
$[ML^{-2}T^{-2}]$
The potential energy of a particle varies with distance $x$ from a fixed origin as $V = \frac{{A\sqrt x }}{{x + B}}$,where
$A$ and $B$ are constants. The dimensions of $AB$ are
A function $f(\theta )$ is defined as $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ Why is it necessary for $f(\theta )$ to be a dimensionless quantity ?
The dimensions of universal gravitational constant are
If $\varepsilon_0$ is permittivity of free space, $e$ is charge of proton, $G$ is universal gravitational constant and $m_p$ is mass of a proton then the dimensional formula for $\frac{e^2}{4 \pi \varepsilon_0 G m_p{ }^2}$ is
Dimensions of kinetic energy are