7.Alternating Current
medium

Discuss the power in $AC$ circuit containing only an inductor. 

Option A
Option B
Option C
Option D

Solution

The current reaches its maximum value later than the voltage by one-fourth of a period $\frac{\mathrm{T}}{4}=\frac{\pi / 2}{\omega}$

The instantaneous power supplied to the inductor is,

$\mathrm{P}_{\mathrm{L}}=\mathrm{IV}=\mathrm{I}_{\mathrm{m}} \sin \left(\omega t-\frac{\pi}{2}\right) \times \mathrm{V}_{\mathrm{m}} \sin (\omega t)$

$=-\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}} \cos (\omega t) \sin (\omega t)$

$=-\frac{\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}}}{2} \sin (2 \omega t)$

The average power over a complete cycle is,

$\mathrm{P}_{\mathrm{L}}=\left\langle-\frac{\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}} \sin (2 \omega t)}{2}\right\rangle$

$=-\frac{\mathrm{I}_{\mathrm{m}} \mathrm{V}_{\mathrm{m}}}{2}(\sin (2 \omega t))=0$

Since the average of $\sin (2 \omega t)$ over a complete cycle is zero. Thus, the average power supplied to an inductor over one complete cycle is zero. Figures explains it in detail.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.