- Home
- Standard 13
- Quantitative Aptitude
Divide $Rs. 2602$ between $X$ and $Y$, so that the amount of $X$ after $7 \,yr$ is equal to the amount of $Y$ after $9 \,yr$, the interest being compounded at $4 \%$ pa.
$Rs. 1352$, $Rs. 1250$
$Rs. 1400$, $Rs. 1350$
$Rs. 1215$, $Rs. 1300$
$Rs. 1500$, $Rs. 1450$
Solution
Let the first part be Rs. a Second part Rs. $(2602- a )$ According to question:
Amount after 7 years $=$ Amount after 9 years
$\Rightarrow a\left(1+\frac{r}{100}\right)^{7}=(2602-a)\left(1+\frac{r}{100}\right)^{9}$
$\Rightarrow \frac{ a }{(2602- a )}=\left(1+\frac{4}{100}\right)^{2}$
$\Rightarrow \frac{a}{(2602-a)}=\frac{26}{25} \times \frac{26}{25}=\frac{676}{625}$
$\Rightarrow 625 a=676(2602-a)$
$\Rightarrow \quad a=\frac{676 \times 2602}{1301}= Rs .1352$
Second part $= Rs .(2602- a )= Rs .1250$